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ABSTRACT 
 

The paper presents optimum design of statically indeterminate two-hinged steel 
portal frames under multiple loadings. An explicit formulation of the analysis 
equations using the Virtual Work Method is developed. Loading cases include both 
gravity loads and wind loads. Design equations involving local buckling, lateral 
torsional buckling, shear buckling, combined stresses and deflection constraints, as 
provided by the latest Egyptian Code of Practice for Steel Construction and Bridges, 
are included. The objective function is chosen as the minimum weight of the structure. 
The design variables are the cross-sectional dimensions of the built-up sections for 
rafters and columns. The design constraints cover all cases of discontinuity for 
compact prismatic sections. Ordinary mild steel and high tensile steel cases are 
considered. The optimization technique adopted in this research is the Modified 
Method of Feasible Directions. Several examples are presented to validate the 
efficiency of the formulation and to prove that the designs obtained in this work are 
more economical than those provided by other classical design approaches. Savings up 
to fifty percent of the weight of the frame are achieved for some cases. 
 
KEYWORDS: Optimization; steel frames; virtual work; design codes; feasible 

directions.  
 
1. INTRODUCTION 
 

Optimum design of structures has been an active area of research for more than 

four decades [1]. Numerous publications are now available covering different aspects 

of this topic. However, periodic updating of design codes, failure of some optimization 

formulations to capture all design requirements, and reluctance of design firms to 

adopt optimization techniques on the practical level, necessitate more research efforts 

in this direction. 
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An optimality criterion approach is developed for optimum structural design of 

steel frames on a parallel machine [2]. The optimum design of a planar steel framed 

structure subjected to a single load case, using a single design variable for each cross-

section, is studied [3]. A large space frame steel structure subjected to realistic AISC-

specified stress, displacement, and buckling constraints is optimized on 

supercomputers [4]. An algorithm which takes into account the non-linear response of 

the frame due to the effect of axial loads, sway constraints, and combined stress 

limitations is developed [5]. An algorithm for preliminary minimum weight design of 

moment frames for lateral loading, maintaining the least possible drift for the given 

loading and geometry is introduced [6]. A new method for the optimum design of 

frames with stress, stiffness and stability constraints is presented [7]. An algorithm is 

used for the optimum design of steel frames composed of tapered members having an 

I-section. The displacements at joints are considered as constraints [8]. 

 

The goal of this research is to develop an efficient algorithm for minimum 

weight design of one-bay two-hinged portal steel frames composed of prismatic built-

up sections, as compared to other classical design approaches. Local buckling, lateral 

torsional buckling, shear buckling, combined stresses, and deflection constraints, as 

given by ECP’01 [9], are included. Gravity loads and wind loads are considered. The 

Modified Method of Feasible Directions (MMFD) optimization technique [10] is used 

to solve the problem. To this end, the rest of this work is organized as follows. First, 

the structural problem is posed and the method of analysis together with the resulting 

straining actions is presented. Next, the design variables, the objective function, and 

the constraints are identified. Then, three examples are introduced to validate the 

efficiency of the developed algorithm. Finally, several conclusions are drawn. 

 

2. PROBLEM STATEMENT 

 
Figure 1 outlines a plane one-bay two-hinged portal/gable steel frame of span L, 

height H, and rafter slope angle �. The cross-sections of the column and rafter are 
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made of built-up sections as shown in the figure. The design variables t1, b1, t2, and h1 

define the thickness and width of the column flange and web, respectively. Similarly, 

t3, b2, t4, and h2 define the same dimensions for the rafter’s section. 

 
Fig.1. Layout of Portal Frame and Design Parameters 

 

Vertical dead and live loads and lateral wind loads, as per ECP’93 [11], are 

considered in this work. Using the Method of Virtual Work [12], closed form solutions 

for the normal forces, shearing forces, and bending moments at different frame 

locations are derived. The internal forces values are given in terms of the design 

variables shown in Fig.1, the parameters given in the list of symbols at the end of the 

paper, and the following formulae: 
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Fig.2. Straining Actions for Gravity Loads 
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values provided by ECP’93 should be transformed from the horizontal projection to 

the inclined span length of the rafter before using the formulae given in Fig.2. 

Furthermore, the direction of bending moment M3 shown in Fig. 3 may be reversed to 

the outside of the frame depending upon the dimensions of the rafter span and the 

column height. 

 

3. OPTIMIZATION FORMULATION 

 
Using the results of the aforementioned analysis for defining the constraints for 

compact built-up sections, as given by the latest version of the Egyptian Code of 

Practice for Steel Construction and Bridges ECP’01, the following optimization 

formulation is obtained: 

 
Minimize: 
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The correspondence between the constraint numbers, as given in this work, and 

those stated by ECP’01 is shown in Table (1). It is assumed that a knee bracing is 

utilized to connect the compression flange in the lower side of the rafter with the 

purlins. Consequently, the laterally unsupported length of the rafter is taken equal to 

the spacing between purlins, Sp. It should be noted that Eqs. (5-24) are given in MKS 

metric units; i.e. kgf or tonf is used as the unit of forces and cm is used as the unit of 

lengths. However, all dimensions and results that presented in this paper are given in 

SI units. 



OPTIMUM DESIGN OF ONE-BAY PORTAL STEEL FRAMES 

 731

Table 1. Types of Constraints as per ECP' 01 
 

Element Constraint Type Equation 
Number ECP' 01 

5 Table 2.1a, Page 9 
Local buckling 

6 Table 2.1c, Page 11 

7 Equation 2.18, Page 16 

8 Equation 2.18, Page 16 Lateral buckling 

10 Table 4.1, Page 51 

Shear buckling 9 Equation 2.3, Page 14 
Shear stress 12 Equations 2.7-2.10, Pages 14 and 15 

Combined normal 
stresses 11 Equation 2.35, Page 25 

C
ol

um
n 

 

Horizontal deflection 24 Table 9.1, Page 132 
13 Table 2.1a, Page 9 

Local buckling 
14 Table 2.1c, Page 11 

15 Equation 2.18, Page 16 

16 Equation 2.18, Page 16 Lateral buckling 

18 Table 4.1, Page 51 

Shear buckling 17 Equation 2.3, Page 14 
Shear stress 21,22 Equations 2.7-2.10, Pages 14 and 15 

Combined normal 
stresses 19,20 Equation 2.35, Page 25 

R
af

te
r 

Vertical deflection 23 Table 9.1, Page 132 

 

The optimization formulation stated by Eqs. (4-25) is coded in Fortran77 

programming language and linked to the MMFD optimization technique. The flow 

chart summarized the optimization method used in this work is shown in Fig. 4. 

Generally speaking, in the optimization of steel structures the built-up sections have an 

advantage than hot-rolled sections since the rounded approximation in the calculated 

results are very close to the optimal solution. Consequently, in this paper the obtained 
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design variables are rounded in order to be utilized in the practical applications. The 

following section outlines the cases for which the formulation is experimented. 

 

Start  

 
Read input data   

 
Calculate straining actions 

 

Generation of code constraints 
in terms of design variables 

and straining actions 
 

 
Calculate the starting weight of frame   

  
     Change design variables  

 
Check code 
constraints                                                     

               <0                                                          No  
Optimization 
Technique 

         yes    
 

Change design variables 
 
 

Calculate the objective function 
 
 
 

 Check No  
convergence                                                    

 
 
                                                                      yes  

 
 

End   
 
 

Fig.4. Flow Chart of the Optimization Method 
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4. APPLICATIONS 

 

Three examples are presented in this work. Spans ranging from 9000 mms to 

30000 mms are considered. Normal mild steel and high tensile steel cases are 

investigated. Comparisons are done for hot rolled sections and built-up sections. Each 

of the three case studies is summarized hereafter. 

 
4.1 Example 1 

 
The first example is a frame constructed in Ras Ghareb, Gulf of Suez. The 

frame span L is 9000 mms; the eave height H is 4500 mms; the rafter slope in 1:20 

(refer to Fig.1). The steel grade used in this frame is high strength steel (360/520). The 

cross-sectional dimensions of the built-up sections used for this frame are listed in 

Table 2. The heights of the tapered sections for the compared example are also 

indicated. The weight of the constructed frame is 3.7 KN. 

 

Table 2. Design History for Example 1 
 

Iteration Number Design 
Variables 0 5 10 15 20 25 Final-1 Final-2 

Compared 
Example 

t1(mm) 100 38.1 18.9 13.8 11.3 6.8 7.1 6.9 5.0 

t2(mm) 100 68.5 18.6 7.4 4.9 1.8 1.9 5.0 5.0 

t3(mm) 100 13.5 14.2 11.6 10.4 7.3 6.9 6.9 5.0 

t4(mm) 100 67.6 15.0 9.9 8.0 4.0 3.6 5.0 5.0 

h1(mm) 1000 903.4 786.7 410.5 271.2 98.9 106.5 104.0 200/300 

h2(mm) 1000 921.3 828.8 550.2 441.0 219.2 198.6 196.6 200/300 

b1(mm) 1000 530.3 339.6 246.7 202.9 128.2 132.5 132.6 150 

b2(mm) 1000 301.8 259.9 212.9 191.4 137.8 131.7 131.8 150 

Wt (KN) 424.2 122.1 33.4 14.3 9.5 3.4 3.3 3.6 3.7 

 

Using a starting point of t1 = t2 = t3 = t4 =100 mms, h1 = h2 = b1 = b2 = 1000 

mms and a starting weight of 424.2 KN, an optimal solution of 3.3 KN is achieved 
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after 29 iterations. The iteration histories for the objective function and the design 

variables are given in Table 2 (Final-1). An improvement of about 10.8% between the 

optimized weight found in this work and the actual constructed structure is achieved. 

 

Figure 5 outlines the iteration history for the weight of the frame. The active 

constraints at optimality are those defined by Eqs. (6), (8), (9), (11), (14), (16), (17), 

and (23) in this work. 

Fig.5. Iteration History for Example 1
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However, Section 7.1 of the ECP’01 requires that the minimum thickness for 

built-up sections is 5 mms. If this side constraint is enforced, a minimum weight of 

3.6 KN is achieved after 21 iterations (Final-2). Specifics of this solution are also 

given in Table 2. The iteration history for this case is also shown in Fig. 5. If the 

calculated design variables of Final-2 are rounded to eliminate the fractions of mms 

a minimum weight of 3.66 KN is obtained. To this end, it is worthwhile noting that 

the cross-sections used for the constructed example do not satisfy ECP’01 design 

constraints. 



OPTIMUM DESIGN OF ONE-BAY PORTAL STEEL FRAMES 

 735

4.2 Example 2 
 

The second example is given in [13]. The span of the frame L is 22000 mms, 

the height of the eave H is 6000 mms and the angle φ of the rafter is 5.7� . Steel 

grade is normal mild steel (240/350). The cross-sections for the compared example 

are prismatic hot rolled ones. The cross-sectional dimensions and weight of the 

frame are given in Table 3. 

Table 3. Design History for Example 2 
 

Iteration Number 
Final 

Design 
Variables 0 5 10 15 Calculated Rounded 

Ref. [13] 

t1(mm) 100 17.0 11.7 11.4 9.5 10.0 20.0 

t2(mm) 100 54.6 28.5 11.3 6.2 7.0 12.0 

t3(mm) 100 17.0 10.0 7.5 7.8 8.0 20.0 

t4(mm 100 15.8 11.0 8.8 7.8 8.0 12.0 

h1(mm) 1000 888.2 847.0 762.8 422.2 423.0 240.0 

h2(mm) 1000 784.6 743.2 593.6 530.2 531.0 240.0 

b1(mm) 1000 374.9 299.2 276.3 229.2 230.0 280.0 

b2(mm) 1000 403.6 244.2 187.9 194.7 195.0 280.0 

Wt (KN) 803.3 103.0 51.9 27.9 19.1 19.8 38.4 

 
 

Using the same unrealistic starting point of the previous example, a minimum 

weight of 19.1 KN is reached after 19 iterations with an improvement of 50% between 

the weight of the frame and the one given in the stated reference. The iteration 

histories of the objective function and the design variables are listed in Table 3. 

Furthermore, the rounded design variables that give a total frame weight equal to 19.8 

KN are shown in Table 3. 

 

Two other starting points, one of which is infeasible and the other is an 

extremely overdesign, are used to demonstrate the robustness of the formulation 
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presented in this work. Iteration histories are shown in Fig. 6. All starting points 

converged to the same optimal solution. The active constraints at optimality are those 

defined by Eqs. (6), (9), (11), (14), (17), and (19). 

 

Fig.6. Iteration History with Different Starting Points for 
Example 2
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4.3 Example 3 
 

A third and final example is given to illustrate the versatility of the formulation 

presented in this research. The span L of the frame is 30000 mms, the eave height H is 

6000 mms and the angle of the rafter φ is 5.7 degrees. Normal mild steel (240/350) is 

used for this example. The rafter and columns are prismatic members composed of 

built-up cross-sections. The initial dimensions of cross-sections, as well as the weight 

of the frame, are given in Table 4. Also, design histories are included. A minimum 

weight of 34.8 KN is achieved after 20 iterations. On the other hand, the total frame 

weight for the rounded design variables is 35.14 KN (see Table 4). 
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Table 4. Design History for Example 3 

Iteration Number 

Final 
Design 

Variables 0 5 10 15 
Calculated Rounded 

t1(mm) 100 40.8 32.4 14.6 12.9 13.0 

t2(mm) 100 63.5 12.1 10.5 7.4 8.0 

t3(mm) 100 19.0 9.6 9.6 11.0 11.0 

t4(mm) 100 11.3 10.7 10.4 9.9 10.0 

h1(mm) 1000 903.0 817.5 708.8 498.8 499 

h2(mm) 1000 764.2 722.7 703.0 672.3 673 

b1(mm) 1000 868.6 667.9 314.7 265.4 266 

b2(mm) 1000 402.8 215.4 209.5 175.7 176 

Wt (KN) 992.6 177.5 78.1 42.4 34.8 35.14 

 

Another irrational over design is investigated. Values of t1 = t2 = t3 = t4 = 200 

mms, h1 = h2 = b1 = b2 = 2000 mms, and a weight of 3970 KN, are used as the other 

starting point. A convergence to a minimum weight of 34.8 KN is reached after 25 

iterations. Iteration histories for the two starting points are shown in Fig. 7. The active 

constraints at optimality are those defined by Eqs. (9), (11), (16), (17), and (23) in this 

work. 

Fig.7. Iteration History for Example 3
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Two other optimization methods; namely the Method of Feasible Directions 

(MFD) [10] and Davidon-Fletcher-Powell (DFP) variable metric method [14] are used 

to illustrate the efficiency and fastness of the MMFD. A convergence to the optimal 

weights of 40.799 and 67.27 KN are reached after 40 and 42 iterations for MFD and 

DFP, respectively. Figure 8 shows the iteration histories for the three optimization 

techniques. 

 

Fig.8. Iteration Histories for Different Optimization Methods
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5. CONCLUSIONS 

A robust algorithm is developed for optimum design of one-bay two-hinged 

portal/gable steel frames under gravity and lateral wind loads. The frames are 

composed of prismatic compact built-up sections. An explicit closed-form formulation 

for the straining actions is developed using the Virtual Work Method. The objective 

function is represented by the weight of the frame and the design variables by the 

cross-sectional dimensions. All ECP’01 constraints for stresses, stability, and 

deformations are incorporated. Different spans and different steel grades are included. 

The optimization technique adopted in this work is the MMFD. Three examples are 

presented to demonstrate the validity of the formulation. All results indicate the 

efficiency, practicality, and versatility of this approach over other conventional design 

approaches. Savings up to 50% in designs are achieved. 
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NOTATIONS 
 

The following symbols are used in this paper: 
A1  Cross-sectional area of column� 
A2  Cross-sectional area of rafter� 
A’1, A”1 Code factor, ECP’01, Eq. 2.35. 
b1   Flange width of column section. 
b2   Flange width of rafter section. 
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Cb   Code coefficient, ECP’01, Eq. (2.28) & Table 2.2. 
d1   Total height of column section. 
d2   Total height of rafter section. 
E   Modulus of elasticity of steel (210 GPa). 
f   Difference of frame height at column and at mid-span (ridge)� 
Fy   Yield stress of steel� 
Fc   Allowable stress in axial compression. 
Fcb   Allowable stress in bending. 
H   Column height. 
H’   Out-of plane buckling length of column. 
h1   Height of web of column section. 
h2   Height of web of rafter section. 
Ix1   Moment of inertia of�column section about X-axis� 
Ix2   Moment of inertia of�rafter section about X-axis� 
Iy1   Moment of inertia of�column section about Y-axis� 
Iy2   Moment of inertia of�rafter section about Y-axis� 
ix1   Radius of gyration for column section abut X-axis. 
ix2   Radius of gyration for rafter section abut X-axis. 
iy1   Radius of gyration for column section about Y-axis. 
iy2   Radius of gyration for rafter section about Y-axis. 
Kb   Buckling length factor. 
L   Frame span. 
qb   Buckling shear stresses. 
S   Rafter length� 
Sw   Size of weld. 
Sp   Spacing between purlins. 
t1   Thickness of flange of column section. 
t2   Thickness of web of column section. 
t3   Thickness of flange of rafter section� 
t4   Thickness of web of rafter section� 
W   Gravity loads (D.L.+L.L�� 
W’   Basic wind load. 
WL   Live load. 
Wt   Total weight of frame� 
α1, α2   Code factor, ECP’01, Table 2.1a. 
γs   Specific weight of steel (7800 Kg/m3). 
�� � � Slope angle of the rafter. 
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